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Abstract
Sensors are being widely used in many industrial practices and contain rich information which can be analyzed to detect system
anomalies. The outputs of sensors are time-ordered data known as waveform signals, which are also called profiles. Many
monitoring methods only focus on a single profile. However, multiple profiles are recorded by different sensor channels in many
processes. It is crucial to study methods to analyze the multi-channel profiles. In this paper, uncorrelated multilinear discriminant
analysis is suggested for fault detection and diagnosis. Then, the algorithm combined with tensor-to-tensor projection is proposed
to make it get better performance in improving the accuracy of detection and reducing the fluctuation of the results in analyzing
multi-channel profiles. The proposed method is applied directly to the multi-channel profiles. Discriminative and uncorrelated
features are extracted, which are then fed into classifiers to identify different fault types. The effectiveness of the developed
method is demonstrated by using both the simulation and a real-world case study. The real profiles in the case study are from a
sensor fusion application in multiple forging operation processes, where multi-channel profiles are monitored to detect the faults
of missing parts.

Keywords Fault detection and diagnosis . Feature extraction . Data classification . Sensor fusion . Linear discriminant analysis

1 Introduction

In complicated manufacturing processes, sensors are widely
used to collect real-time process data. In many practical appli-
cations, the output of an automatic sensor and data capturing
technology is represented by spatial- or time-ordered function-
al data known aswaveform signals or profiles. There are many
examples of profiles collected from the industrial processes,
such as the force signals used to press seats into engine head
during an assembly process [1] and the power signals in ul-
trasonic metal welding process [2]. These data are affected by
the properties of the materials, process setups, etc. The profile
data can provide rich information for monitoring product qual-
ity and fault diagnosis. One of the challenges is that many
industrial processes contain some operations which produce
small signals. Although these signals provide valuable

information about the industrial process, their changes are
hard to detect. The corresponding profile is called “weak sig-
nal.” To avoid the complexity of profile data analysis, some
simple statistical characteristics like the maximum or mean of
the profile data are often used for online process monitoring.
Although these methods are useful, they fail to utilize the rich
information of data and cannot meet the demand in some
industrial applications. For example, in the forging process,
multiple dies work together to produce a full product. Missing
parts from some dies will not only produce defective products
but also damage the expensive dies.

Many researchers have studied the modeling and monitor-
ing of profile data [3–5]. In the area of profile monitoring and
fault detection, Paynabar et al. [6] applied a nonlinear para-
metric regressionmodel to develop a systemwhich was robust
and insensitive to the variations of temperature in real-world
production practice. Some methods combined with artificial
networks (ANN) and machine learning were proposed to
monitor profiles [7, 8]. A variable moving window kernel
principal component analysis (VMWKPCA) algorithm was
developed to monitor the nonlinear process in [9]. Lu et al.
[10] proposed a nonlinear adaptive dictionary learning algo-
rithm to achieve early fault detection of bearing elements. Lei
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et al. [11] added up all channel profiles and applied principal
component analysis (PCA) to the aggregated tonnage profiles
to extract features. For the purpose of feature extraction, a set
of low-dimensional monitoring features were extracted from
the high-dimensional profile data to detect tool wear [12–14].
An adaptive sensor fusion combined with signal processing
techniques to extract features to estimate of tool wear was
proposed in [15]. Paynabar et al. [16] combined multidimen-
sional PCAwith change-point models for the construction of
monitoring statistics. Grasso et al. [17] combined PCA with
empirical mode decomposition to monitor health condition in
waterjet cutting. A robust incremental online feature extrac-
tion method based on PCA, RIPCA (Robust Incremental
Principal Component Analysis), is proposed in [18].

Most literature analyzed individual profile (single signal).
However, in many processes, multiple profiles are recorded by
different sensor channels. For instance, as shown in Fig. 1,
four sensors are installed on different uprights of a forging
machine, and each sensor collects the tonnage forces exerted
on dies. The outputs of these sensors are called multi-channel
profiles. An individual sensor signal does not make full use of
rich information of multi-channel profiles and only provides a
partial state of the process. The analysis of multi-channel pro-
files presents challenges to researchers. One solution is to
reshape the multi-channel profiles into a high-dimensional
vector. However, this significantly increases the dimension
and computational complexity. In addition, it breaks the orig-
inal data structure and may lose some useful information.
Hence, multilinear feature extraction methods need to be stud-
ied. Paynabar et al. [19] applied uncorrelated multilinear prin-
cipal component analysis (UMPCA) [20] for profile monitor-
ing and fault diagnosis by accounting for the interrelationship
of different profile channels. Grasso et al. [21] applied multi-
way PCA to reduce the profile dimensionality in order to
improve the efficiency of the profile analysis system and mon-
itored multi-channel profiles with control charts. Pacella [22]
applied two multilinear extensions of PCA to extract features
in an emission control system.

Linear discriminant analysis (LDA) is a classical algorithm
for feature extraction. However, regular LDA cannot be oper-
ated on multi-channel profiles directly because it can only be
applied for vectors. One solution is to reshape the multi-
channel profiles into a high-dimensional vector, which is
known as Vectorized-LDA (VLDA). This approach, again,
does not make full use of rich information of multi-channel
profiles. An uncorrelated multilinear discriminant analysis
(UMLDA) [23] was proposed for face recognition and image
processing. UMLDA operates on multidimensional data di-
rectly and extracts uncorrelated discriminant features by
tensor-to-vector projection. Compared to the UMPCA algo-
rithm which is unsupervised, UMLDA is a supervised
multilinear feature extractor which will consider class infor-
mation when extracting features and could be more suitable

for face recognition. Although there is some exploratory re-
search on the applications of UMLDA to face recognition and
image processing. Little research has been reported in the
literature on using the UMLDA technique to analyze multi-
channel profiles for fault detection and diagnosis in
manufacturing systems.

In this paper, we first applied UMLDA to analyze multi-
channel profiles, which is compared with previous methods to
show its effectiveness in process monitoring and fault diagno-
sis. UMLDA is sometimes not stable depending on projection
orders. We then proposed an improved UMLDA (I-UMLDA)
method with tensor-to-tensor projection to reduce the effects
of projection order to improve the accuracy of detection and
reduce the fluctuation of the results. The proposed method is
applied to analyze multi-channel profiles by obtaining a set of
extracted features, which are used later to classify different
working conditions and provide fault diagnosis results. The
effectiveness of the improved method is demonstrated by
using both the simulation and a real-world example of a
multi-operation forging process.

The rest of the paper is organized as follows. Section 2
reviews the UMLDA algorithm for analysis and feature ex-
traction onmulti-channel profiles and proposes the I-UMLDA
with tensor-to-tensor projection. In Sect. 3, the performance of
the proposed I-UMLDA is evaluated and compared with
UMLDA and other competing methods using simulations.
The proposed method is applied to a case study on a multi-
operation forging process in Sect. 4. Finally, this paper is
concluded in Sect. 5.

2 Dimension reduction of multi-channel
profiles by UMLDA and I-UMLDA

In this section, the notations relating to the tensor representa-
tion and some basic multilinear algebra are reviewed in Sect.
2.1. The implementations of I-UMLDA combined with
tensor-to-tensor projection are presented in Sect. 2.2.

2.1 Basic definitions and tensor projection

An Nth-order tensor is denoted as X∈ℝI1�I2�…�IN , and each
In represents the n-mode of tensor X ; n ¼ 1;…;N. The n-
mode vector of X are the vectors whose dimension is In got
from original tensor X by varying the index in while fixing all
the other indices. In multilinear algebra, the n-mode (n = 1, 2,

… , N) product of the tensor X∈ℝI1�I2�…�IN by the matrix Z

∈ℝDn�In denoted by X�nZ is a tensor with entries X�nZð Þ
i1;…; in−1; dn; inþ1;…; ið N Þ ¼ ∑

in
X i1;…; iNð Þ � Z dn; inð Þ.

The UMLDA and I-UMLDAproposed in this paper takes a
tensor subspace approach of feature extraction. There are two
common methods of tensor projection when projecting a
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tensor into a subspace: the tensor-to-vector projection (TVP)
and the tensor-to-tensor projection (TTP) [24]. The TVP
consists of multiple elementary multilinear projection
(EMPs). The EMPs consist of unit projection vector

per mode. A tensor X∈ℝI1�I2�…�IN can be projected

to a scalar y by an EMP v 1ð ÞT ; v 2ð ÞT ;…; v Nð ÞT
n o

as y

¼ X ;Vh i ¼ X ; v 1ð Þ∘v 2ð Þ∘;…; ∘vð
�

NÞi ¼ X�1v 1ð ÞT�2v 2ð ÞT

…�Nv Nð ÞT ;∥v nð Þ∥ ¼ 1 for n = 1, 2,… , N, where ∥ · ∥ is

the Euclidean norm for vectors, and V ¼ v 1ð Þ∘v 2ð Þ∘;…; ∘v Nð Þ,
and ∘ denotes the outer product. The TVP of a tensorX to a L-
dimensional vector y ∈ℝL consists of L EMPs

v 1ð ÞT
l ; v 2ð ÞT

l ;…; v Nð ÞT
l

n o
; l ¼ 1;…; L. It can be denoted as

X�N
n¼1 v nð ÞT

l ; n ¼ 1;…;N
n oL

l¼1
, in which the lth element of

y is got by the lth EMP as y lð Þ ¼ X�1v
1ð ÞT
l �2v

2ð ÞT
l …�Nv

Nð ÞT
l .

In the multi-operation forging process, there is a set of

multi-channel profiles which can be denoted as X∈ℝC�K�M

withM samples (sample index m = 1,… ,M), and the C is the
number of channels or sensors (channel or sensor index c = 1,
… , C), and the K is the number of data points measured in
each channel (data index k = 1,… , K).

2.2 I-UMLDA

LDA is a classical algorithm for dimensionality reduction and
data classification, while UMLDA is its multilinear extension.
In the multi-operation forging process, the accuracy of fault
detection may fluctuate when the UMLDA algorithm was
implemented on multi-channel profiles because of the
projection order and different initialization. The original
tensor space can be projected into another tensor sub-
space which captures most of the variations in the input
high-dimensional data by TTP before using UMLDA,
and the data transformed in the subspace is arranged
according to the importance in each order. TTP is ini-
tialized by the full projection which can ease the effects of
different order on accuracy to reduce the fluctuation and im-
prove the accuracy of detection.

The TTP consists of a multilinear transformation or projec-

tion matrices Z nð Þ∈ℝIn�Dn ; n ¼ 1;…;N
� �

that projects the

original tensor data X∈ℝI1�I2�…�IN to another tensor data

Y∈ℝD1�D2�…�DN :Y ¼ X�1Z 1ð ÞT�2Z 2ð ÞT…�NZ Nð ÞT . T h e

projection of an n-mode vector of X by Z nð ÞT is computed as
the inner product between the n-mode vector and the rows of

Z nð ÞT . The projection matrices Z nð Þ∈ℝIn�Dn ; n ¼ 1;…;N
� �

need to be determined to maximize the total tensor scatterΨY :

Z nð Þ; n ¼ 1; 2
n o

¼ argmax ΨY ð1Þ

where ΨY ¼ ∑
M

m¼1
∥Ym−Y∥2

F , ∥ � ∥F is the Frobenius norm,

and Y is the mean tensor: Y ¼ 1
M ∑M

m¼1Ym. To solve Z(n), for
all the other given projection Z(1),… , Z(n − 1), Z(n + 1),… , Z(N),
the Z(n) consists of the Dn eigenvectors corresponding to the
largest Dn eigenvalues of the matrix
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Fig. 1 Sensor distributions in the forging machine
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Φ nð Þ ¼ ∑
M

m¼1
X n

m−X
n� �

� ZΦ nð Þ � ZT
Φ nð Þ � X n

m−X
n� �T

ð2Þ

where

ZΦ nð Þ ¼ Z nþ1ð Þ⊗Z nþ2ð Þ⊗…⊗Z Nð Þ⊗Z 1ð ÞZ 2ð Þ⊗…Z n−1ð Þ
� �

ð3Þ

⊗ denotes the Kronecker product and the X n
m is the n-mode

unfolded matrix of the mth tensor Xm. An iterative procedure
can be utilized to solve this problem with initializations
through full projection. The full projection refers to the
multilinear projection with Dn = In, n = 1,… , N. In the full
projection, ZΦ nð Þ � ZT

Φ nð Þ is an identity matrix which was proved

from the pertinent lemma listed in the Appendix. Then,Φ(n) in
(2) turns to

Φ nð Þ ¼ ∑
M

m¼1
X n

m−X
n� �

� Xn
m−X

n� �T
ð4Þ

In this case, Φ(n) is only decided by the original tensor X
and independent of other projection matrices. Therefore, Φ(n)

is not affected by the order of projection which can reduce the
effects of projection order in UMLDA. Then, UMLDA is
applied to the new tensor data Y to determine a set of EMPs
for feature extraction. The classical Fisher Discriminant
Criterion (FDC) in LDA is defined as the scatter ratio for
vector samples, which is trying to maximize the between-
class distance and minimize the with-class distance simulta-
neously. The goal of UMLDA is trying to calculate L EMPs

v nð ÞT
l ; n ¼ 1;…;N

n oL

l¼1
which can maximize the scatter ratio

while the produced features are uncorrelated. Let
yml

;m ¼ 1;…;M
� �

denote the lth projected (scalar) features,

where yml
¼ Ym�1v

1ð ÞT
l �2v

2ð ÞT
l is the projection of the mth

profile sample using the lth EMP. In addition, let hl denote
the set of coordinate vectors. The mth projected sample signal
using the lth EMP is equivalent to the mth element of the lth
coordinate vectors: hl mð Þ ¼ yml

. Accordingly, the between-

class scatter SyBl
and the within-class scatter Sywl

are

SyBl
¼ ∑

C

c¼1
Nc ycl−yl

� �2
SyWl

¼ ∑
M

m¼1
yml

−ycml

� �2
ð5Þ

where C is the number of profile classes, Nc is the number of
samples for class c, cm is the class label for the mth profile

sample, yl ¼ 1
M

� �
∑
m
yml

¼ 0, and ycl ¼ 1
Nc

� �
∑

m;cm¼c
yml

. The

FDC for the lth scalar samples Fy
l ¼

SyBl
SyWl

. Therefore, the ob-

jective function for the lth EMP is

v nð ÞT
l ; n ¼ 1; 2

n o
¼ argmax Fy

l ð6Þ

Subject to v nð ÞT
l v nð Þ

l ¼ 1
hTl h j

∥hl∥∥hj∥
¼ δlj; l; j ¼ 1;…; L

δlj ¼ 1; if l ¼ j
0; otherwise

	
ð7Þ

3 Performance comparison between UMLDA
and I-UMLDA using simulations

In this section, the performances of the UMLDA and I-
UMLDA with TTP implemented on multi-channel profiles
are compared using simulations for fault detection and diag-
nosis. Fixed and random-effect models with benchmark sig-
nals are utilized to generate random nonlinear profile data.

In the simulation of multi-operation forging process, four
sensors are mounted on a forging machine to record 4-channel
profiles during each cycle (C = 4), each sensor consists of 128
data points (K = 128). 200 samples (M = 200) are generated

which can be denoted as tensor X∈ℝC�K�M. It can be repre-
sented as follows:

ycm ¼ αc
mx1 þ βc

mx2 þ bcm þ εcm

m ¼ 1; 2;…; 200; c ¼ 1; 2; 3; 4 ð8Þ
where ycm is theK × 1 vector of profile data for channel c,αc

m is
the fixed-effect coefficients for profile channel c and sample
m, and α~MVN(μα, Σα), μα = [1, 2, 3, 1], Σα = diag-
(0.5,0.5,0.5,0.5); x1 is the K × 1 vector of fixed-effect signals
and a benchmark signals “Doppler” with a range of K is se-
lected, which is illustrated in Fig. 2a; βc

m is the random-
effect coefficients for profile channel c and sample m,
and β~MVN(μβ, Σβ), μβ = [1, 2, 3, 1], Σβ = diag-
(0.5,0.5,0.5,0.5); x2 is the K × 1 vector of random-
effect signals and sine function with T ¼ K

4 is selected:
x2¼2sin 2π

T k
� �

(Fig. 2b), where k is the data points in-
dex; b~MVN(μb, Σb), μb = [5,10,15,12], Σb = diag-
(0.5,0.5,0.5,0.5) and bcm is the K × 1 vector of signal
difference between different channels; εcm∼N 0; 0:5ð Þ is
the random noise.

The simulations generated different out-of-control condi-
tions from in-control working conditions. The out-of-control
working conditions are related to some faults like part missing
from dies or die weight not uniformly distributed etc. A set of
1000 profiles are generated and each class has 200 samples
including one in-control condition and four out-of-control
conditions (1)–(4). All situations are illustrated in Fig. 3.

More concretely, the other four out-of-control conditions
are listed as follows:

1. The shift of the fixed effect signals x1: x1→ x1+2σx1IK ,
where the σx1 is the standard deviation of fixed effect
signals x1, and IK is a K × 1 unit vector.
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2. Variation of the fixed-effect coefficients α: μα = μα +
2σα, σα = 2σα, where μα and σα are the mean and stan-
dard deviation of the fixed effect coefficients α.

3 . We a k o f p a r t r a n g e s i g n a l s x 1 : x1→

x1 1≤k≤
5

8
K and

6

8
K<k ≤K

x1−σx1IK
8

5

8
K<k≤

6

8
K

8><
>: where σx1

is the standard deviation of fixed-effect signals x1, and
IK

8
is a K

8 � 1 unit vector.

4. Phase differences of the random-effect signals: sine func-
tion x2 ¼ 2sin 2π

T k þ π
6

� �

3.1 Methods in comparison

The procedure of multi-channel profile monitoring and fault
detection is shown in Fig. 4. Prior to analyzing the multi-
channel profiles, each profile sample is denoised using a

wavelet-based soft-thresholding method which was also used
before applying UMPCA-based method in [19]. The soft-
thresholding approach is widely used in signal denoising
and is applied with the following thresholding rule:

η bð Þ ¼ sign bð Þ jbj−tð Þþ ð9Þ

where the η(·) is the soft-thresholding function, sign (·) is the
sign function, b is the wavelet coefficients, and t is the thresh-
old [25]. The multi-channel profile can be represented as a
tensor object. The feature extractor, e.g., UMLDA, will trans-
form the tensor data into new features, which will be fed into
some classifiers like nearest neighbor classifier (NNC) for
classification. Finally, the performance will be assessed by
correct classification rates.

The performance of improved algorithms against different
other algorithms is compared. VPCA is referred to as
vectorized-principal component analysis (PCA) [26], which
reshapes the tensor data into a vector first and then applies
the regular PCA. Unlike VPCA, MPCA and UMPCA deal
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with multidimensional (tensor) data rather than vectors. Both
MPCA and UMPCA try to find projections which capture
most of the variations in the input high-dimensional data.
UMLDA and its developed methods are supervised
multilinear methods, which take the classification labels into
considerations. Both the MPCA and UMPCA are unsuper-
vised methods. In some applications, the dimensionality of
the profile is high when the number of samples is limited. It
tends to minimize the within-class scatter towards zero so that
Fy
l can reach the maximum of infinity. But the real within-

class scatter is bigger than the estimated within-class scatter
because of the limited sample number. Hence, the regulariza-
tion parameter γ is introduced to improve the UMLDA meth-
od, which is called Regularized UMLDA(R-UMLDA). γ in
this paper is empirically set to 10−5. However, R-UMLDA is
not very stable because of different initialization and regular-
ization. The regularized UMLDA with aggregation (R-

UMLDA-A) is proposed to aggregate A different initialized
and regularized UMLDA to ease the effects of different ini-
tialization. A is empirically set to 20 and regularization param-
eter γ ranges from 10−7 to 10−2.

3.2 Simulation results

According to the simulation described above, the multi-
channel profile data is generated and different algorithms are
applied and compared with each other. The features extracted
from those algorithms are fed into the nearest neighbor clas-
sifier (NNC) [27]. Let y ∈ RL denote the L-dimensional fea-
tures extracted from multi-channel profile data and

yi ¼ y1i ; y
2
i ;…; yLi

� �T
; y j ¼ y1j ; y

2
j ;…; yLj

� �T
. The output of

NNC is a class label which is assigned to the class of the
nearest neighbor measured by Lp distance:

Table 1 Correct classification rate (CRR) (mean ± Std %)

Number VPCA MPCA UMPCA UMLDA R-UMLDA R-UMLDA-
A

I-UMLDA

1 27.8 ± 4.42 27.5 ± 4.29 27.4 ± 4.44 72.7 ± 5.55 76.7 ± 6.00 91.5 ± 1.14 84.6 ± 5.88

2 28.8 ± 4.66 28.9 ± 4.35 33.7 ± 8.84 75.6 ± 7.99 80.1 ± 7.64 91.5 ± 1.13 87.1 ± 5.83

3 29.6 ± 3.57 29.6 ± 3.41 45.6 ± 8.44 80.0 ± 8.72 83.7 ± 7.16 92.4 ± 1.38 87.4 ± 5.68

4 31.1 ± 2.04 30.9 ± 1.86 52.2 ± 4.83 78.3 ± 8.60 84.8 ± 7.60 91.6 ± 1.11 87.9 ± 4.67

5 38.3 ± 4.97 35.0 ± 3.94 – 78.9 ± 9.61 85.1 ± 6.99 92.1 ± 1.19 88.7 ± 3.21

6 44.0 ± 4.66 37.8 ± 3.47 – 80.8 ± 9.65 84.6 ± 7.14 91.7 ± 1.00 89.3 ± 3.74

7 48.8 ± 4.00 41.2 ± 3.83 – 81.5 ± 8.00 84.2 ± 7.31 92.1 ± 1.39 90.6 ± 2.97

8 52.2 ± 3.05 44.0 ± 3.02 – 80.6 ± 9.08 85.3 ± 7.14 91.9 ± 1.39 91.8 ± 2.27

9 56.2 ± 2.66 56.1 ± 2.90 – 81.2 ± 8.15 84.5 ± 7.57 91.8 ± 1.24 91.8 ± 2.15

10 57.9 ± 2.11 58.4 ± 2.34 – 81.0 ± 8.19 85.0 ± 7.05 91.9 ± 1.67 91.7 ± 1.56

20 61.8 ± 1.62 61.7 ± 2.19 – 87.0 ± 4.66 85.2 ± 6.58 91.7 ± 1.24 92.2 ± 1.25

30 63.4 ± 1.74 64.0 ± 2.07 – 85.8 ± 5.17 87.3 ± 4.92 91.8 ± 1.06 92.1 ± 0.95

Table 2 Average time spent in one experiment (s)

Number VPCA MPCA UMPCA UMLDA R-
UMLDA

R-UMLDA-
A

I-
UMLDA

1 0.12 0.77 0.25 1.65 1.76 6.50 3.03

2 0.14 0.48 0.35 2.02 2.01 10.44 3.16

3 0.13 0.50 0.46 2.46 2.50 15.78 3.22

4 0.13 0.48 0.54 2.92 2.85 20.64 3.40

5 0.14 0.52 – 3.23 3.20 25.88 3.45

6 0.14 0.52 – 3.76 3.72 30.57 3.48

7 0.14 0.49 – 4.21 4.52 39.01 3.69

8 0.13 0.49 – 4.57 4.82 46.43 3.66

9 0.14 0.48 – 5.25 5.12 50.10 4.38

10 0.14 0.48 – 5.53 5.53 56.01 3.79

20 0.14 0.48 – 9.55 9.60 108.49 4.84

30 0.14 0.48 – 13.82 13.84 162.09 5.69
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Lp ¼ ∑
L

l¼1
yli−y

l
j




 


p� �1
p

ð10Þ

when p = 2, Lp distance is Euclidean distance which are usu-
ally used in NNC.

It should be noted that this paper focuses on multilinear
feature extraction and mapping the original space to the new
subspace where profile data has the greatest separability. In
other words, the results of performance are mainly con-
tributed by the feature extraction algorithms rather than
the classifier. The classification accuracy of the pro-
posed method can be improved if a more sophisticated
classifier such as the support vector machine (SVM) is
used instead of the NNC which is a simple classifier.
However, such an experiment is out of the scope of this
paper. The performance of these algorithms is evaluated
and compared based on the following criteria:

1. Correct classification rate (CRR): R ¼
∑

m¼1

Mtest

M~cm¼cm

Mtest
, where

Mtest is the total number of test samples, and M~cm¼cm is
the test sample which the predicted class label ~cm equals
to true class label cm.

2. The standard deviation of CRR (σCRR):

σCRR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ntest
∑
i¼1

Ntest

CRRi−CRR
� �2s

, where the Ntest is the

number of experiments, and CRRi is the Correct classifi-
cation rate of ith experiment. CRR is the mean of CRR:

CRR ¼ 1
Ntest

∑
i¼1

Ntest

CRRi.

3. Average time spent in one experiment.

In order to study the performance with different dimensions
of extracted features, 100 experiments were performed for
each projection with the projected number of features N = 1,
2,… , 10,20,30. The tenfold cross-validation is applied to bet-
ter evaluate the performance of different methods. Tables 1
and 2 show the results.

It should be noted that UMPCA produces up to four fea-
tures which are uncorrected because the number of features
extracted by UMPCA is upper-bounded by min{minnIn,M},
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where In is the n-mode dimensionality andM is the number of
samples.

The plotted results are shown in Fig. 5. It is apparent that the
results of VPCA and UMPCA are worse than methods based
on LDA. It is consistent with our understanding that LDA-
based methods take class information into classification when
reducing dimensionality while PCA-based methods only seek
projections to maximize the variability. It also shows that the I-
UMLDA outperforms UMLDA and R-UMLDA not only in
the mean of CRR but also in the standard deviation of CRR.

The mean of CRR using I-UMLDA is higher than that using
UMLDA and R-UMLDA in Fig. 5a. The standard deviation of
CRR using I-UMLDA decreases with the increase of dimen-
sion and also smaller than these two methods which are shown
in Fig. 5b. The results of R-UMLDA-A are slightly better than
I-UMLDA. However, in Table 2, the cost of R-UMLDA-A is
also larger in that the average time spent is significantly larger
than I-UMLDA. When the dimension of projected features is
30, the running time of R-UMLDA-A is about 31 times longer
than that of I-UMLDA.

Table 3 Tonnage profile segments [19]

Segment

1 2 3 4 5 6 7 8 9

Interval [1153] [154,212] [213,296] [297,447] [448,560] [561,635] [636,816] [817,865] [866,1200]
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4 Case study

In this section, the I-UMLDA with TTP and other different
algorithms are applied to a real-world multi-operation forging
process. As illustrated in Fig. 1, four sensors are installed on
the different uprights of the forging machine, which record the
force exerting on dies represented as four-channel profile data.
Five different dies are working together to produce a final
product which performs five operations in a sequence of (1)
performing, (2) blocking, (3) finishing, (4) piercing, and (5)
trimming. A shape sketch of raw billet, intermediate and final
parts after each operation of the selected forging process are
shown in Fig. 6a. The blocking and finishing operations gen-
erate large signals because they make significant shape chang-
es on the product while the piercing and trimming operations
generate small signals which can also be called weak signals.
It is more difficult to detect missing parts in such operations.

The improved algorithm will be used for missing parts de-
tection with the four-channel profile data. Each profile data
contains rich information about the product quality which can
be used for process conditions classification. The recorded pro-
files will be classified as either a normal working production
without missing parts in all stations or a fault condition due to a
missing part. A training multi-channel profile dataset including
six groups is collected. Fault i (i = 1, … , 5) is a faulty condition
with a missing part in station i and fault 0 is the normal working
production. The overlapping samples of aggregated multi-
channel profile data for normal working conditions with 308
samples and 69 samples under each 5 faulty conditions are
depicted in Fig. 6b. It can be seen that fault 2 and fault 3 can
be easily detected from the fault 0 (normal working condition)
even by visual inspection of a profile. Hence, these two faults
are excluded from the analysis. In addition, the profile signals
partially change at the specific signal segment when a missing
part happens. The profile signals can be segmented into several
parts which specify the working boundary of each operation.
This paper will extract features and classify faults by the corre-
sponding signal segments rather than the whole cycle of the
signals in order to increase the detection sensitivity and robust-
ness. Lei et al. [11] added up all channel profiles and applied the
vectorized method to the aggregated tonnage profiles to extract
features. Paynabar et al. [19] did not break the tensor structure of
multi-channel profile data and applied UMPCA to analyze
multi-channel profiles that considered the interrelationship of
different profile channels. Each profile can be divided into nine
segments based on their study. Each boundary corresponding to
each segment of a profile is shown in Table 3. UMPCA cannot
classify fault 1, fault 4, and fault 5 from fault 0 by one segment
for the reason that UMPCA do not consider class information
when extracting features. Therefore, more segments were used
to classify different faults. Segment 4 was selected for detecting
fault 4 from fault 0, while segment 3 was chosen for detecting
fault 1 and fault 5 from fault 0 in [19]. In this paper, only

segment 4 is needed to detect fault 1, fault 4, and fault 5 from
fault 0 with UMLDA-based method, which greatly improved
the efficiency.

As described in simulation, the procedures in Fig. 4 are
executed step by step for feature extraction and classification.
The algorithms discussed in simulations are applied to these
multi-channel profiles. As can be seen in Fig. 7a, b, signals
for fault 4, which are “weak signals” mentioned in the intro-
duction, are difficult to detect. The features extracted from
UMLDA lead to worse results than features extracted by I-
UMLDA. In contrast, fault 1, fault 4, and fault 5 can be
completely detected from fault 0 using I-UMLDA. And from
Fig. 7c, d, the features extracted by PCA-based methods are
hard to separate as expected.

As shown in Fig. 7a, b, it should also be mentioned that the
scale of new feature space mapped by I-UMLDA is much
larger than the scale of new feature space mapped by
UMLDA which will improve the data separability. The ex-
tracted features were classified with NNC classifier. A tenfold
cross-validation method was applied in order to evaluate the
performance of the classification. Table 4 shows the overall
confusion matrices of NNC classifiers for UMLDA and I-
UMLDA features obtained from tenfold cross-validation.

As expected from the scatter plots in Fig. 7, faults 1 and 5
can be detected and classified using both I-UMLDA and
UMLDA. However, fault 4 is hard to detect from fault 0,
and the features extracted from I-UMLDA lead to better re-
sults than that obtained by UMLDA. On average, 93.01% of
the missing parts can be accurately classified using UMLDA
while 99.81% of the missing parts can be accurately classified
using I-UMLDA. The results indicate that the proposed I-
UMLDA has a better performance of fault detection and di-
agnosis than that of UMLDA.

Table 4 Confusion matrix of NNC for UMLDA and I-UMLDA
features

Classified as

Fault 0 Fault 1 Fault 4 Fault 5

UMLDA

Actual

Fault 0 292 0 15 1

Fault 1 0 69 0 0

Fault 4 20 0 49 0

Fault 5 0 0 0 69

I-UMLDA

Actual

Fault 0 307 0 0 1

Fault 1 0 69 0 0

Fault 4 0 0 69 0

Fault 5 0 0 0 69
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5 Conclusion

An I-UMLDA method based on TTP is proposed to
analyze multi-channel profile (tensor) data. The original
tensor data can be projected into another tensor which
can capture most of the variations in the input high-
dimensional data before using UMLDA method. The
data transformed in the subspace is arranged according
to the importance in each order. It can reduce the ef-
fects of different order on the accuracy and achieve
better fault detection performance in reducing the fluc-
tuation of accuracy and improving the accuracy of de-
tection. The simulation was implemented to assess the
performance of the improved algorithm, which shows
the proposed method has better performance than
UMLDA as well as other competing algorithms. The
results indicated that the features extracted from I-
UMLDA are more separable and the correct classifica-
tion rates are less fluctuant than UMLDA and compet-
itor methods. These methods were also applied to a
real-world case study of a multi-operation forging pro-
cess for fault detection and diagnosis. The results
showed that I-UMLDA outperforms UMLDA in classi-
fying different faulty types. Further research can be car-
ried out in developing tensor-based algorithms for data
fusion, fault detection, and classification.
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Appendix

In (2), when Dn = In, n = 1,… , N, ZΦ nð Þ � ZT
Φ nð Þ is an identity

matrix.
By successive application of the transpose property of the

Kronecker product (M⊗N)T =MT⊗NT [28].

ZΦ nð Þ
T ¼ Z nþ1ð ÞT⊗Z nþ2ð ÞT⊗…⊗Z Nð ÞT⊗Z 1ð ÞTZ 2ð ÞT⊗…Z n−1ð ÞT

� �
ð11Þ

By the Kronecker product theorem (M ⊗ N)(X ⊗
Y) = (MX)⊗ (XY) [28],

ZΦ nð Þ � ZΦ nð Þ
T ¼ Z nþ1ð ÞZ nþ1ð ÞT⊗…⊗Z Nð ÞZ Nð ÞT⊗Z 1ð ÞZ 1ð ÞT⊗…Z n−1ð ÞZ n−1ð ÞT

� � ð12Þ

For all n, when Dn = In, Z(n) is a square matrix,
Z(n)TZ(n)=I In , where I In is an In × In identity matrix. Thus,

ZΦ nð Þ � ZΦ nð ÞT ¼ I I1�I2�…�In−1�Inþ1�…�IN .
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